N ov 2 00 8 A Lindemann - Weierstrass theorem for semiabelian varieties over function fields ∗
نویسندگان
چکیده
We prove an analogue of the Lindemann-Weierstrass theorem (that the exponentials of a Q-linearly independent set of algebraic numbers are algebraically independent), replacing Qalg by C(t)alg, and Gm by a semiabelian variety over C(t) alg. Both the formulations of our results and the methods are differential algebraic in nature.
منابع مشابه
Galois theory, functional Lindemann-Weierstrass, and Manin maps
We prove several new results of Ax-Lindemann type for semiabelian varieties over the algebraic closure K of C(t), making heavy use of the Galois theory of logarithmic differential equations. Using related techniques, we also give a generalization of the theorem of the kernel for abelian varieties over K. This paper is a continuation of [7] as well as an elaboration on the methods of Galois desc...
متن کاملA Lindemann-weierstrass Theorem for Semi-abelian Varieties over Function Fields
We prove an analogue of the Lindemann-Weierstrass theorem (that the exponentials of a Q-linearly independent set of algebraic numbers are algebraically independent), replacing Qalg by C(t)alg, and Gm by an arbitrary commutative algebraic group over C(t)alg without unipotent quotients. Both the formulations of our results and the methods have a differential algebraic flavour.
متن کاملSupplementary Lecture Notes on Elliptic Curves
1. What is an elliptic curve? 2 2. Mordell-Weil Groups 5 2.1. The Group Law on a Smooth, Plane Cubic Curve 5 2.2. Reminders on Commutative Groups 8 2.3. Some Elementary Results on Mordell-Weil Groups 9 2.4. The Mordell-Weil Theorem 11 2.5. K-Analytic Lie Groups 13 3. Background on Algebraic Varieties 15 3.1. Affine Varieties 15 3.2. Projective Varieties 18 3.3. Homogeneous Nullstellensätze 20 3...
متن کاملDivision Points on Subvarieties of Isotrivial Semiabelian Varieties
The positive characteristic function-field Mordell-Lang conjecture for finite rank subgroups is resolved for curves as well as for subvarieties of semiabelian varieties defined over finite fields. In the latter case, the structure of the division points on such subvarieties is determined.
متن کاملF -structures and Integral Points on Semiabelian Varieties over Finite Fields
Motivated by the problem of determining the structure of integral points on subvarieties of semiabelian varieties defined over finite fields, we prove a quantifier elimination and stability result for finitely generated modules over certain finite simple extensions of the integers given together with predicates for cycles of the distinguished generator of the ring.
متن کامل